<div class="eI0"> <div class="eI1">Model:</div> <div class="eI2"><h2><a href="http://www.metoffice.gov.uk" target="_blank">NAE</a>: Global weather forecast model from the "UK MetOffice, North Atlantic European Model"</h2></div> </div> <div class="eI0"> <div class="eI1">Zaktualizowano:</div> <div class="eI2">4 times per day, from 0:00, 05:00, 11:00 and 17:00 UTC</div> </div> <div class="eI0"> <div class="eI1">Czas uniwersalny:</div> <div class="eI2">12:00 UTC = 13:00 CET</div> </div> <div class="eI0"> <div class="eI1">Rozdzielczość:</div> <div class="eI2">0.18° x 0.28°</div> </div> <div class="eI0"> <div class="eI1">parametr:</div> <div class="eI2">Storm Relative Helicity</div> </div> <div class="eI0"> <div class="eI1">Opis:</div> <div class="eI2"> SRH (Storm Relative Helicity) is a measure of the potential for cyclonic updraft rotation in right-moving supercells, and is calculated for the lowest 1-km and 3-km layers above ground level. There is no clear threshold value for SRH when forecasting supercells, since the formation of supercells appears to be related more strongly to the deeper layer vertical shear. Larger values of 0-3-km SRH (greater than 250 m**2/s**2) and 0-1-km SRH (greater than 100 m**2/s**2), however, do suggest an increased threat of tornadoes with supercells. For SRH, larger values are generally better, but there are no clear "boundaries" between non-tornadic and significant tornadic supercells.<br> </div> </div> <div class="eI0"> <div class="eI1">NWP:</div> <div class="eI2">Numeryczna prognoza pogody - ocena stanu atmosfery w przyszłości na podstawie znajomości warunków początkowych oraz sił działających na powietrze. Numeryczna prognoza oparta jest na rozwiązaniu równań ruchu powietrza za pomocą ich dyskretyzacji i wykorzystaniu do obliczeń maszyn matematycznych.<br> Początkowy stan atmosfery wyznacza się na podstawie jednoczesnych pomiarów na całym globie ziemskim. Równania ruchu cząstek powietrza wprowadza się zakładając, że powietrze jest cieczą. Równań tych nie można rozwiązaД‡ w prosty sposób. Kluczowym uproszczeniem, wymagającym jednak zastosowania komputerów, jest założenie, że atmosferę można w przybliżeniu opisaД‡ jako wiele dyskretnych elementów na które oddziaływają rozmaite procesy fizyczne. Komputery wykorzystywane są do obliczeń zmian w czasie temperatury, ciśnienia, wilgotności, prędkości przepływu, i innych wielkości opisujących element powietrza. Zmiany tych własności fizycznych powodowane są przez rozmaitego rodzaju procesy, takie jak wymiana ciepła i masy, opad deszczu, ruch nad górami, tarcie powietrza, konwekcję, wpЕ‚yw promieniowania słonecznego, oraz wpływ oddziaЕ‚ywania z innymi cząstkami powietrza. Komputerowe obliczenia dla wszystkich elementów atmosfery dają stan atmosfery w przyszłości czyli prognozę pogody.<br> W dyskretyzacji równań ruchu powietrza wykorzystuje się metody numeryczne równań różniczkowych cząstkowych - stąd nazwa numeryczna prognoza pogody.<br> <br>Zobacz Wikipedia, Numeryczna prognoza pogody, <a href="http://pl.wikipedia.org/wiki/Numeryczna_prognoza_pogody" target="_blank">http://pl.wikipedia.org/wiki/Numeryczna_prognoza_pogody</a> (dostęp lut. 9, 2010, 20:49 UTC).<br> </div></div> </div>