<div class="eI0"> <div class="eI1">Model:</div> <div class="eI2"><h2>RAP (Rapid Refresh)</h2></div> </div> <div class="eI0"> <div class="eI1">Updated:</div> <div class="eI2">24 times per day, from 00:00 - 23:00 UTC</div> </div> <div class="eI0"> <div class="eI1">Greenwich Mean Time:</div> <div class="eI2">12:00 UTC = 12:00 GMT</div> </div> <div class="eI0"> <div class="eI1">Resolution:</div> <div class="eI2">0.128° x 0.123°</div> </div> <div class="eI0"> <div class="eI1">Parameter:</div> <div class="eI2">Wind 10 meters above the ground</div> </div> <div class="eI0"> <div class="eI1">Description:</div> <div class="eI2"> This chart displays the modeled average wind vector in 10 m above the ground for every grid point of the model (ca. every 80 km). In general, the actual observed wind velocity at 10 m above ground is a little bit lower than the modeled one. However, usually the computed wind velocity is pretty close to the reality. Therefore this chart is very useful for sailors, gliders, hang gliders and balloon pilots. (<a href="javascript:NeuFenster()">wind-converter</a>) </div> </div> <div class="eI0"> <div class="eI1">RAP:</div> <a href="http://www.ncep.noaa.gov" target="_blank">RAP</a> <br> <div class="eI2">The Rapid Refresh (RAP) is a NOAA/NCEP operational weather prediction system comprised primarily of a numerical forecast model and analysis/assimilation system to initialize that model. It is run with a horizontal resolution of 13 km and 50 vertical layers. ,<br> The RAP was developed to serve users needing frequently updated short-range weather forecasts, including those in the US aviation community and US severe weather forecasting community. The model is run for every hour of day and is integrated to 18 hours for each cycle. The RAP uses the ARW core of the WRF model and the Gridpoint Statistical Interpolation (GSI) analysis - the analysis is aided with the assimilation of cloud and hydrometeor data to provide more skill in short-range cloud and precipitation forecasts.<br> </div></div> <div class="eI0"> <div class="eI1">NWP:</div> <div class="eI2">Numerical weather prediction uses current weather conditions as input into mathematical models of the atmosphere to predict the weather. Although the first efforts to accomplish this were done in the 1920s, it wasn't until the advent of the computer and computer simulation that it was feasible to do in real-time. Manipulating the huge datasets and performing the complex calculations necessary to do this on a resolution fine enough to make the results useful requires the use of some of the most powerful supercomputers in the world. A number of forecast models, both global and regional in scale, are run to help create forecasts for nations worldwide. Use of model ensemble forecasts helps to define the forecast uncertainty and extend weather forecasting farther into the future than would otherwise be possible.<br> <br>Wikipedia, Numerical weather prediction, <a href="http://en.wikipedia.org/wiki/Numerical_weather_prediction" target="_blank">http://en.wikipedia.org/wiki/Numerical_weather_prediction</a>(as of Feb. 9, 2010, 20:50 UTC).<br> </div></div> </div>