<div class="eI0">
  <div class="eI1">Modelo:</div>
  <div class="eI2"><h2><a href="http://www.dwd.de/" target="_blank" target="_blank">ICON</a>(ICOsahedral Nonhydrostatic general circulation model) from the German Weather Service</h2></div>
 </div>
 <div class="eI0">
  <div class="eI1">Actualiza&ccedil;&atilde;o:</div>
  <div class="eI2">4 times per day, from 08:00, 14:00, 20:00, and 00:00 UTC</div>
 </div>
 <div class="eI0">
  <div class="eI1">Greenwich Mean Time:</div>
  <div class="eI2">12:00 UTC = 12:00 WET</div>
 </div>
 <div class="eI0">
  <div class="eI1">Resolution:</div>
  <div class="eI2">0.125&deg; x 0.125&deg;</div>
 </div>
 <div class="eI0">
  <div class="eI1">par&acirc;metro:</div>
  <div class="eI2">Relative Humidity at 850 hPa </div>
 </div>
 <div class="eI0">
  <div class="eI1">Descri&ccedil;&atilde;o:</div>
  <div class="eI2">
This chart shows the relative humidity at Pa. In the forefield of a trough line 
as well as at and near fronts (Jets), warmer less dense air is forced to ascend.
As the ascending air cooles, the relative humidity increases, eventually resulting 
in condensation and the formation of clouds.This process is known as frontal lifting. <br>
High relative humidity at 850 hPa - equivalent to ca. 5000 ft a.s.l.  - indicates 
the areas of frontal lifting and thus the active zones of the current weather.
    
  </div>
 </div>
 <div class="eI0">
  <div class="eI1">ICON:</div>
  <div class="eI2"><a href="http://www.dwd.de/" target="_blank">ICON</a> The ICON dynamical core is a development initiated by the Max Planck Institute for Meteorology (MPI-M) and the Opens external link in current windowGermany Weather Service (DWD). This dynamical core  is designed to better tap the potential of new generations of high performance computing, to better represent fluid conservation properties that are increasingly important for modelling the Earth system, to provide a more consistent basis for coupling the atmosphere and ocean and for representing subgrid-scale heterogeneity over land, and to allow regionalization and limited area implementations.<br>
</div></div>
 <div class="eI0">
  <div class="eI1">NWP:</div>
  <div class="eI2">A previs&atilde;o num&eacute;rica do tempo usa o estado instant&acirc;neo da atmosfera como dados de entrada para modelos matem&aacute;ticos da atmosfera, com vista &agrave; previs&atilde;o do estado do tempo.<br>
Apesar dos primeiros esforços para conseguir prever o tempo tivessem sido dados na d&eacute;cada de 1920, foi apenas com o advento da era dos computadores que foi possível realiz&aacute;-lo em tempo real. A manipulaç&atilde;o de grandes conjuntos de dados e a realizaç&atilde;o de c&aacute;lculos complexos para o conseguir com uma resoluç&atilde;o suficientemente elevada para produzir resultados úteis requer o uso dos supercomputadores mais potentes do mundo. Um conjunto de modelos de previs&atilde;o, quer &agrave; escala global quer &agrave; escala regional, s&atilde;o executados para criar previsões do tempo nacionais. O uso de previsões com modelos semelhantes ("model ensembles") ajuda a definir a incerteza da previs&atilde;o e estender a previs&atilde;o do tempo bastante mais no futuro, o que n&atilde;o seria possível conseguir de outro modo.<br>
<br>Contribuidores da Wikip&eacute;dia, "Previs&atilde;o num&eacute;rica do tempo," Wikip&eacute;dia, a enciclop&eacute;dia livre, <a href="http://pt.wikipedia.org/w/index.php?title=Previs%C3%A3o_num%C3%A9rica_do_tempo&amp;oldid=17351675" target="_blank">http://pt.wikipedia.org/w/index.php?title=Previs%C3%A3o_num%C3%A9rica_do_tempo&oldid=17351675</a> (accessed fevereiro 9, 2010). <br>
</div></div>
</div>