<div class="eI0"> <div class="eI1">Modèle:</div> <div class="eI2"><h2><a href="http://www.dwd.de/" target="_blank" target="_blank">ICON</a>(ICOsahedral Nonhydrostatic general circulation model) from the German Weather Service</h2></div> </div> <div class="eI0"> <div class="eI1">Mise à jour:</div> <div class="eI2">2 times per day, from 00:00 and 12:00 UTC</div> </div> <div class="eI0"> <div class="eI1">Greenwich Mean Time:</div> <div class="eI2">12:00 UTC = 14:00 CEST</div> </div> <div class="eI0"> <div class="eI1">Résolution:</div> <div class="eI2">0.02° x 0.02°</div> </div> <div class="eI0"> <div class="eI1">Paramètre:</div> <div class="eI2">Relative Humidity at 700 hPa </div> </div> <div class="eI0"> <div class="eI1">Description:</div> <div class="eI2"> This chart shows the relative humidity at Pa. In the forefield of a trough line as well as at and near fronts (Jets), warmer less dense air is forced to ascend. As the ascending air cooles, the relative humidity increases, eventually resulting in condensation and the formation of clouds.This process is known as frontal lifting. <br> High relative humidity at 700 hPa - equivalent to ca. 10000 ft a.s.l. - indicates the areas of frontal lifting and thus the active zones of the current weather. </div> </div> <div class="eI0"> <div class="eI1">Spaghetti plots:</div> <div class="eI2"> are a method of viewing data from an ensemble forecast.<br> A meteorological variable e.g. pressure, temperature is drawn on a chart for a number of slightly different model runs from an ensemble. The model can then be stepped forward in time and the results compared and be used to gauge the amount of uncertainty in the forecast.<br> If there is good agreement and the contours follow a recognisable pattern through the sequence then the confidence in the forecast can be high, conversely if the pattern is chaotic i.e resembling a plate of spaghetti then confidence will be low. Ensemble members will generally diverge over time and spaghetti plots are quick way to see when this happens.<br> <br>Spaghetti plot. (2009, July 7). In Wikipedia, The Free Encyclopedia. Retrieved 20:22, February 9, 2010, from <a href="http://en.wikipedia.org/w/index.php?title=Spaghetti_plot&oldid=300824682" target="_blank">http://en.wikipedia.org/w/index.php?title=Spaghetti_plot&oldid=300824682</a> </div> </div> <div class="eI0"> <div class="eI1">ICON-D2:</div> <div class="eI2"><a href="http://www.dwd.de/" target="_blank">ICON-D2</a> The ICON dynamical core is a development initiated by the Max Planck Institute for Meteorology (MPI-M) and the Opens external link in current windowGermany Weather Service (DWD). This dynamical core is designed to better tap the potential of new generations of high performance computing, to better represent fluid conservation properties that are increasingly important for modelling the Earth system, to provide a more consistent basis for coupling the atmosphere and ocean and for representing subgrid-scale heterogeneity over land, and to allow regionalization and limited area implementations.<br> </div></div> <div class="eI0"> <div class="eI1">NWP:</div> <div class="eI2">La prévision numérique du temps (PNT) est une application de la météorologie et de l'informatique. Elle repose sur le choix d'équations mathématiques offrant une proche approximation du comportement de l'atmosphère réelle. Ces équations sont ensuite résolues, à l'aide d'un ordinateur, pour obtenir une simulation accélérée des états futurs de l'atmosphère. Le logiciel mettant en œuvre cette simulation est appelé un modèle de prévision numérique du temps.<br><br> <br>Prévision numérique du temps. (2009, décembre 12). Wikipédia, l'encyclopédie libre. Page consultée le 20:48, février 9, 2010 à partir de <a href="http://fr.wikipedia.org/w/index.php?title=Pr%C3%A9vision_num%C3%A9rique_du_temps&oldid=47652746" target="_blank">http://fr.wikipedia.org/w/index.php?title=Pr%C3%A9vision_num%C3%A9rique_du_temps&oldid=47652746</a>.<br> </div></div> </div>