<div class="eI0">
  <div class="eI1">Mod&egrave;le:</div>
  <div class="eI2"><h2><a href="http://en.wikipedia.org/wiki/European_Centre_for_Medium-Range_Weather_Forecasts" target="_blank">ECMWF</a>: Global weather forecast model from the "European Centre for Medium-Range Weather Forecasts". ECMWF is now running its own Artificial Intelligence/Integrated Forecasting System (AIFS) as part of its experiment suite. These machine-learning-based models are very fast, and they produce a 10-day forecast with 6-hourly time steps in approximately one minute. </h2></div>
 </div>
 <div class="eI0">
  <div class="eI1">Mise &agrave; jour:</div>
  <div class="eI2">4 times per day, from 3:30, 09:30, 15:30 and 21:30 UTC</div>
 </div>
 <div class="eI0">
  <div class="eI1">Greenwich Mean Time:</div>
  <div class="eI2">12:00 UTC = 14:00 CEST</div>
 </div>
 <div class="eI0">
  <div class="eI1">R&eacute;solution:</div>
  <div class="eI2">0.25&deg; x 0.25&deg;</div>
 </div>
 <div class="eI0">
  <div class="eI1">Param&egrave;tre:</div>
  <div class="eI2">Temperature at 2 metres above the ground</div>
 </div>
 <div class="eI0">
  <div class="eI1">Description:</div>
  <div class="eI2">
    
  </div>
 </div>
 <div class="eI0">
  <div class="eI1">Cluster of Ensemble Members:</div>
  <div class="eI2">
20 members of an ensemble run are divided into different clusters which means groups with similar members according to the hierarchical "Ward method"
The average surface pressure of all members in each cluster are computed and shown as isobares.
The number of members in each cluster determines the probability of the forecast (see percentage)
   </div>
  </div>
 <div class="eI0">
  <div class="eI1">Dendrogramme:</div>
  <div class="eI2">
A dendrogram shows the multidimensional distances between objects in a tree-like structure.  Objects that are closest in a multidimensional data space are connected by a horizontal line forming a cluster. The distance between a given pair of objects (or clusters) are indicated by the height of the horizontal line.
[http://www.statistics4u.info/fundstat_germ/cc_dendrograms]. The greater the distance the bigger the differences.
   </div>
  </div>
 <div class="eI0">
  <div class="eI1">NWP:</div>
  <div class="eI2">La pr&eacute;vision num&eacute;rique du temps (PNT) est une application de la m&eacute;t&eacute;orologie et de l'informatique. Elle repose sur le choix d'&eacute;quations math&eacute;matiques offrant une proche approximation du comportement de l'atmosph&egrave;re r&eacute;elle. Ces &eacute;quations sont ensuite r&eacute;solues, &agrave; l'aide d'un ordinateur, pour obtenir une simulation acc&eacute;l&eacute;r&eacute;e des &eacute;tats futurs de l'atmosph&egrave;re. Le logiciel mettant en &oelig;uvre cette simulation est appel&eacute; un mod&egrave;le de pr&eacute;vision num&eacute;rique du temps.<br><br>
<br>Pr&eacute;vision num&eacute;rique du temps. (2009, d&eacute;cembre 12). Wikip&eacute;dia, l'encyclop&eacute;die libre. Page consult&eacute;e le 20:48, f&eacute;vrier 9, 2010 &agrave; partir de <a href="http://fr.wikipedia.org/w/index.php?title=Pr%C3%A9vision_num%C3%A9rique_du_temps&oldid=47652746" target="_blank">http://fr.wikipedia.org/w/index.php?title=Pr%C3%A9vision_num%C3%A9rique_du_temps&oldid=47652746</a>.<br>
</div></div>
</div>