<div class="eI0"> <div class="eI1">Modèle:</div> <div class="eI2"><h2><a href="http://en.wikipedia.org/wiki/European_Centre_for_Medium-Range_Weather_Forecasts" target="_blank">ECMWF</a>: Global weather forecast model from the "European Centre for Medium-Range Weather Forecasts". ECMWF is now running its own Artificial Intelligence/Integrated Forecasting System (AIFS) as part of its experiment suite. These machine-learning-based models are very fast, and they produce a 10-day forecast with 6-hourly time steps in approximately one minute. </h2></div> </div> <div class="eI0"> <div class="eI1">Mise à jour:</div> <div class="eI2">4 times per day, from 3:30, 09:30, 15:30 and 21:30 UTC</div> </div> <div class="eI0"> <div class="eI1">Greenwich Mean Time:</div> <div class="eI2">12:00 UTC = 14:00 CEST</div> </div> <div class="eI0"> <div class="eI1">Résolution:</div> <div class="eI2">0.25° x 0.25°</div> </div> <div class="eI0"> <div class="eI1">Paramètre:</div> <div class="eI2">Maximum wind velocity of convective wind gusts</div> </div> <div class="eI0"> <div class="eI1">Description:</div> <div class="eI2"> The method of Ivens (1987) is used by the forecasters at KNMI to predict the maximum wind velocity associated with heavy showers or thunderstorms. The method of Ivens is based on two multiple regression equations that were derived using about 120 summertime cases (April to September) between 1980 and 1983. The upper-air data were derived from the soundings at De Bilt, and observations of thunder by synop stations were used as an indicator of the presence of convection. The regression equations for the maximum wind velocity (w<sub>max</sub> ) in m/s according to Ivens (1987) are:<br> <ul type="square"> <li>if T<sub>x</sub> - θ<sub>w850</sub> < 9°C <dl> <dd>w<sub>max</sub> = 7.66 + 0.653⋅(θ<sub>w850</sub> - θ<sub>w500</sub> ) + 0.976⋅U<sub>850</sub><br></dd> </dl> <li>if T<sub>x</sub> - θ<sub>w850</sub> ≥ 9° C</li> <dl> <dd>w<sub>max</sub> = 8.17 + 0.473⋅(θ<sub>w850</sub> - θ<sub>w500</sub> ) + (0.174⋅U<sub>850</sub> + 0.057⋅U<sub>250</sub>)⋅√(T<sub>x</sub> - θ<sub>w850</sub>)<br></dd> </dl> </ul> <br> where <ul> <li>T<sub>x</sub> is the maximum day-time temperature at 2 m in K <li>θ<sub>wxxx</sub> the potential wet-bulb temperature at xxx hPa in K <li>U<sub>xxx</sub> the wind velocity at xxx hPa in m/s. </ul> The amount of negative buoyancy, which is estimated in these equations by the difference of the potential wet-bulb temperature at 850 and at 500 hPa, and horizontal wind velocities at one or two fixed altitudes are used to estimate the maximum wind velocity. The effect of precipitation loading is not taken into account by the method of Ivens. (Source: <a href="http://www.knmi.nl/" target="_blank">KNMI</a>) </div> </div> <div class="eI0"> <div class="eI1">NWP:</div> <div class="eI2">La prévision numérique du temps (PNT) est une application de la météorologie et de l'informatique. Elle repose sur le choix d'équations mathématiques offrant une proche approximation du comportement de l'atmosphère réelle. Ces équations sont ensuite résolues, à l'aide d'un ordinateur, pour obtenir une simulation accélérée des états futurs de l'atmosphère. Le logiciel mettant en œuvre cette simulation est appelé un modèle de prévision numérique du temps.<br><br> <br>Prévision numérique du temps. (2009, décembre 12). Wikipédia, l'encyclopédie libre. Page consultée le 20:48, février 9, 2010 à partir de <a href="http://fr.wikipedia.org/w/index.php?title=Pr%C3%A9vision_num%C3%A9rique_du_temps&oldid=47652746" target="_blank">http://fr.wikipedia.org/w/index.php?title=Pr%C3%A9vision_num%C3%A9rique_du_temps&oldid=47652746</a>.<br> </div></div> </div>