Model:

557WW: "557th Weather Wing Ensemble" The US Air Force’s 557th Weather Wing creates the Global Ensemble Prediction Suite (GEPS) twice per day by ingesting 63 global forecast model runs produced by three operational numerical modeling centers and creating tailored statistical ensemble forecasts. Products include probabilities for precipitation and snowfall, and means/standard deviations of temperature, wind, pressure, height, and relative humidity. 240 hours of one-degree gridded forecast output is produced at 6 hour intervals on the 00Z and 12Z cycle.

Updated:
2 times per day, from 06:00 and 18:00 UTC
Greenwich Mean Time:
12:00 UTC = 17:00 IST
Resolution:
1° x 1°
Parameter:
Sea Level Pressure in hPa
Description:
The surface chart (also known as surface synoptic chart) presents the distribution of the atmospheric pressure observed at any given station on the earth's surface reduced to sea level. You can read the positions of the controlling weather features (highs, lows, ridges or troughs) from the distribution of the isobars (lines of equal sea level pressure). The isobars define the pressure field. The pressure field is the dominating player in the weather system. Additionally, this map helps you to identify synoptic-scale waves and gives you a first estimate on meso-scale fronts.
Spaghetti plots:
are a method of viewing data from an ensemble forecast.
A meteorological variable e.g. pressure, temperature is drawn on a chart for a number of slightly different model runs from an ensemble. The model can then be stepped forward in time and the results compared and be used to gauge the amount of uncertainty in the forecast.
If there is good agreement and the contours follow a recognisable pattern through the sequence then the confidence in the forecast can be high, conversely if the pattern is chaotic i.e resembling a plate of spaghetti then confidence will be low. Ensemble members will generally diverge over time and spaghetti plots are quick way to see when this happens.

Spaghetti plot. (2009, July 7). In Wikipedia, The Free Encyclopedia. Retrieved 20:22, February 9, 2010, from http://en.wikipedia.org/w/index.php?title=Spaghetti_plot&oldid=300824682
NWP:
Numerical weather prediction uses current weather conditions as input into mathematical models of the atmosphere to predict the weather. Although the first efforts to accomplish this were done in the 1920s, it wasn't until the advent of the computer and computer simulation that it was feasible to do in real-time. Manipulating the huge datasets and performing the complex calculations necessary to do this on a resolution fine enough to make the results useful requires the use of some of the most powerful supercomputers in the world. A number of forecast models, both global and regional in scale, are run to help create forecasts for nations worldwide. Use of model ensemble forecasts helps to define the forecast uncertainty and extend weather forecasting farther into the future than would otherwise be possible.

Wikipedia, Numerical weather prediction, http://en.wikipedia.org/wiki/Numerical_weather_prediction(as of Feb. 9, 2010, 20:50 UTC).